YouTube
Formulation
Parametric equations [1]
[2]
\begin{align*}
x(t) &= \int_0^t \cos\theta^2\,\diff\theta\\
y(t) &= \int_0^t \sin\theta^2\,\diff\theta
\end{align*}
The limits of $x(t)$, $y(t)$ as $t\rightarrow\pm\infty$ are known:
\begin{align*}
\lim_{t\rightarrow\pm\infty}x(t) &= \int_0^{\pm\infty} \cos\theta^2\,\diff\theta = \pm\frac{1}{2}\sqrt{\frac{\pi}{2}}\\
\lim_{t\rightarrow\pm\infty}y(t) &= \int_0^{\pm\infty} \sin\theta^2\,\diff\theta = \pm\frac{1}{2}\sqrt{\frac{\pi}{2}}
\end{align*}
Curvature and osculating circle
Let
\begin{align*}
\bm{r} = \left[x(t), y(t)\right]^T
\end{align*}
Then
\begin{align*}
\frac{\diff\bm{r}}{\diff t} &= \left[\cos t^2, \sin t^2\right]^T \\
\frac{\diff s}{\diff t} &= \left|\frac{\diff\bm{r}}{\diff t}\right| = 1\ \ (s:\text{Arc length paramenter})
\end{align*}
Unit tangential vector $\bm{t}$
\begin{align*}
\bm{t} = \frac{\diff \bm{r}}{\diff s}=\frac{\diff\bm{r}}{\diff t}\frac{\diff t}{\diff s}=\left[\cos t^2, \sin t^2\right]^T
\end{align*}
Curvature $\kappa$
\begin{align*}
\frac{\diff\bm{t}}{\diff s} &= \frac{\diff\bm{t}}{\diff t}\frac{\diff t}{\diff s}
= \left[-2t\sin t^2, 2t\cos t^2\right]^T\\
\kappa &= \left|\frac{\diff\bm{t}}{\diff s}\right| = \sqrt{(-2t\sin t^2)^2+(2t\cos t^2)^2}
= \sqrt{(2t)^2}=2|t|
\end{align*}
Unit principal normal vector $\bm{n}$
\begin{align*}
\bm{n} = \frac{1}{\kappa}\frac{\diff\bm{t}}{\diff s}
=\frac{1}{2|t|}\left[-2t\sin t^2, 2t\cos t^2\right]^T
=\left[-\frac{t}{|t|}\sin t^2, \frac{t}{|t|}\cos t ^2\right]^T
\end{align*}
Radius of curvature $\rho$
\begin{align*}
\rho = \frac{1}{\kappa} = \frac{1}{2|t|}
\end{align*}
Center of curvature $\bm{c}$
\begin{align*}
\bm{c} &= \bm{r}+\rho\bm{n}\\
&= \left[x(t), y(t)\right]^T+\frac{1}{2|t|}\left[-\frac{t}{|t|}\sin t^2, \frac{t}{|t|}\cos t^2\right]^T\\
&= \left[x(t)-\frac{1}{2t}\sin t^2, y(t)+\frac{1}{2t}\cos t^2\right]^T\ \ (\because |t|^2=t^2)
\end{align*}
Simulation [gnuplot]
Source code (PLT file)
Output (PNG file → GIF file)
Only curve |
Curve with limit points |
|
|
Curve with osculating circles |
Curve with the points and the circles |
|
|
Graph of Fresnel integrals $C(t)$ and $S(t)$
Source code (PLT file)
Output (PNG file)
Note : Numerical Integration
Composite trapezoidal rule [3]
\begin{align*}
\int_a^b f(x)\,\diff x \approx \frac{h}{2}\left(f(x_0)+2\sum_{i=1}^{N-1}f(x_i)+f(x_N)\right)
\end{align*}
where
\begin{align*}
x_i &= a+ih\ (i=0, 1, \cdots,\ N-1, N)\\
h &= \frac{b-a}{N}
\end{align*}
This time,
\begin{equation*}
a=0, b=t\ \rightarrow\ h=\frac{t}{N}, x_i=ih
\end{equation*}
Composite Simpson's rule [4]
\begin{align*}
\int_a^b f(x)\,\diff x \approx \frac{h}{3}\sum_{i=1}^{N/2}\left[f(x_{2i-2})+4f(x_{2i-1})+f(x_{2i})\right]
\end{align*}
where
\begin{align*}
x_i &= a+ih\ (i=0,\ 1,\ \cdots,\ N-1,\ N)\\
h &= \frac{b-a}{N}
\end{align*}
This time,
\begin{equation*}
a=0, b=t\ \rightarrow\ h=\frac{t}{N}, x_i=ih
\end{equation*}
More details
GitHub Repository
https://github.com/hiroloquy/euler-spiral.git
References
-
^
Euler spiral - Wikipedia
-
^
Fresnel integral - Wikipedia
-
^
Trapezoidal rule - Wikipedia
-
^
Simpson's rule - Wikipedia
No comments:
Post a Comment