Processing math: 100%

Simulation of Bouncing Balls | #5: Bouncing on Implicit Functions (1) [gnuplot]

Saturday, April 13, 2019

gnuplot Mechanics Simulation of Bouncing Balls YouTube

t f B! P L

YouTube

Simulation

Model of a Bouncing Ball


Impulse-momentum theorem \begin{eqnarray} \label{eq:im5} m\boldsymbol{v}'=m\boldsymbol{v}+\boldsymbol{I}=m\boldsymbol{v}+I\boldsymbol{n} \end{eqnarray} Collision \begin{eqnarray} \left|\boldsymbol{v}'\cdot\boldsymbol{n}\right|=e\left|\boldsymbol{v}\cdot\boldsymbol{n}\right| \end{eqnarray} Calculating I \begin{eqnarray} I &=& \left| \left(m\boldsymbol{v}'\right) \cdot \boldsymbol{n} \right| + \left| \left(m\boldsymbol{v}\right) \cdot \boldsymbol{n} \right| \nonumber\\ &=& m\left(\left|\boldsymbol{v}' \cdot \boldsymbol{n} \right| + \left| \boldsymbol{v} \cdot \boldsymbol{n} \right|\right) \nonumber\\ &=& m\left(e\left|\boldsymbol{v}\cdot\boldsymbol{n}\right|+\left|\boldsymbol{v}\cdot\boldsymbol{n}\right|\right) \nonumber\\ &=& -m\left(e+1\right) \left( \boldsymbol{v} \cdot \boldsymbol{n} \right) \label{eq:I} \end{eqnarray} Velocity after the collision (inserting (\ref{eq:I}) into (\ref{eq:im5})) \begin{eqnarray} \boldsymbol{v}'=\boldsymbol{v}-(e+1)\left(\boldsymbol{v}\cdot\boldsymbol{n}\right)\boldsymbol{n} \end{eqnarray}
Wall function \begin{equation} W(x, y)=-f(x, y) \end{equation} Inequality constraint \begin{equation} W(x, y)\geq 0 \end{equation} Unit normal vector \begin{equation} \boldsymbol{n}=\frac{\nabla W}{\left|\nabla W\right|} \end{equation} Collision detection \begin{equation} \boldsymbol{v}'=\boldsymbol{v}-\left(e+1\right)\left(\boldsymbol{v}\cdot \frac{\nabla W}{\left|\nabla W\right|}\right)\frac{\nabla W}{\left|\nabla W\right|} \end{equation}

Case 1

f(x, y) = 15^2-\left(x^2+y^2 \right)

PLT file

  1. # Setting --------------------
  2. reset
  3. set term gif animate delay 5 size 1280, 720
  4. set output "fxy01.gif"
  5.  
  6. set nokey
  7. set sample 10000
  8. set xr[-20:20]
  9. set yr[-20:20]
  10. set xl "{/TimesNewRoman:Italic=24 x}"
  11. set yl "{/TimesNewRoman:Italic=24 y}"
  12. set tics font 'TimesNewRoman, 20'
  13. set xtics 5
  14. set ytics 5
  15.  
  16. set size ratio -1 # ratio = yrange / xrange
  17. set grid
  18.  
  19. N = 5
  20. array x[N]
  21. array y[N]
  22. array vx[N]
  23. array vy[N]
  24. array c[N] = ["royalblue", "red", "orange", "green", "black"]
  25.  
  26. # Parameter --------------------
  27. r = 0.3 # Radius of the ball
  28. g = 9.8 # Gravitational acceleration
  29. dis = 500 # Start to disappear
  30. e = 1.
  31. dt = 0.001 # Time step
  32. dh = dt/6
  33. cut = 80 # Decimation
  34. ep = 1e-4 # for collision detection
  35. time1 = 2 # Stop time4
  36. lim1 = time1/dt/cut
  37.  
  38. time2 = 40 # Time limit40
  39. lim2 = time2/dt
  40.  
  41. # Functions --------------------
  42. # Wall
  43. a = 1
  44. b = 1
  45. R = 15
  46. f(x, y) = (x/a)**2 + (y/b)**2
  47. G(x, y) = R**2 - f(x, y)
  48. # Partial derivative of G(x, y)
  49. Gx(x, y) = -(f(x-2*dt, y)-8*f(x-dt, y)+8*f(x+dt, y)-f(x+2*dt, y)) / (12*dt)
  50. Gy(x, y) = -(f(x, y-2*dt)-8*f(x, y-dt)+8*f(x, y+dt)-f(x, y+2*dt)) / (12*dt)
  51. # n = (fx, fy) / sqrt(fx^2+fy^2)
  52. d(x, y) = sqrt(x**2+y**2)
  53. nx(x, y) = Gx(x)/d(Gx(x),Gy(y))
  54. ny(x, y) = Gy(y)/d(Gx(x),Gy(y))
  55.  
  56. # Inner product of v and n
  57. vn(x,y,vx,vy) = vx*nx(x,y)+vy*ny(x,y)
  58. I(x,y,vx,vy) = -(1+e)*vn(x,y,vx,vy)
  59.  
  60. # Equations of Motion
  61. rk1(x,y,vx,vy) = vx # dx/dt
  62. rk2(x,y,vx,vy) = vy # dy/dt
  63. rk3(x,y,vx,vy) = 0 # dvx/dt
  64. rk4(x,y,vx,vy) = -g # dvy/dt
  65.  
  66. # 4th order Runge-Kutta (Define RK_i(x, y, vx, vy))
  67. do for[i=1:4]{
  68. RKi = "RK"
  69. rki = "rk".sprintf("%d", i)
  70. RKi = RKi.sprintf("%d(x, y, vx, vy) = (\
  71. k1 = %s(x, y, vx, vy),\
  72. k2 = %s(x + dt*k1/2., y + dt*k1/2., vx + dt*k1/2., vy + dt*k1/2.),\
  73. k3 = %s(x + dt*k2/2., y + dt*k2/2., vx + dt*k2/2., vy + dt*k2/2.),\
  74. k4 = %s(x + dt*k3, y + dt*k3, vx + dt*k3, vy + dt*k3),\
  75. dh * (k1 + 2*k2 + 2*k3 + k4))", i, rki, rki, rki, rki)
  76. eval RKi
  77. }
  78.  
  79. # Elastic
  80. e(e) = sprintf("{/TimesNewRoman:Italic e} = %.2f", e)
  81.  
  82. # Time
  83. Time(t) = sprintf("{/TimesNewRoman:Italic t} = %.1f s", t)
  84.  
  85.  
  86. # Plot --------------------
  87. # Initiate value
  88. t = 0.0 # Time
  89.  
  90. do for[j=1:N]{
  91. tmpx = 0.8*R*(2*rand(0)-1)
  92. tmpy = 0.8*R*(2*rand(0)-1)
  93. while(f(tmpx, tmpy)>(0.8*R)**2){
  94. tmpx = a*(2*rand(0)-1)
  95. tmpy = b*(2*rand(0)-1)
  96. }
  97. x[j] = tmpx # Position
  98. y[j] = tmpy
  99. vx[j] = 5*(2*rand(0)-1) # Velocity
  100. vy[j] = 5*(2*rand(0)-1)
  101. }
  102. # Draw initial state for lim1 steps
  103. do for[i=1:lim1]{
  104. # Time
  105. set label 1 Time(t) font 'TimesNewRoman, 24' at graph 0.03, 0.04 left
  106. set label 2 e(e) font 'TimesNewRoman, 24' at graph 0.023, 0.09 left
  107. # Wall
  108. set obj 1 circ at 0, 0 size R fs transparent border lc rgb 'black'
  109. # Ball
  110. do for[j=1:N]{
  111. set object j+1 circle at x[j], y[j] size r fc rgb c[j] fs solid front
  112. }
  113. plot 1/0
  114. }
  115.  
  116. # Update
  117. do for[i=1:lim2]{
  118. # Time
  119. t = t + dt
  120. set label 1 Time(t)
  121. do for[j=1:N]{
  122. # 4th order Runge-Kutta
  123. tmp_x = x[j] + RK1(x[j], y[j], vx[j], vy[j])
  124. tmp_y = y[j] + RK2(x[j], y[j], vx[j], vy[j])
  125. tmp_vx = vx[j] + RK3(x[j], y[j], vx[j], vy[j])
  126. tmp_vy = vy[j] + RK4(x[j], y[j], vx[j], vy[j])
  127. tmp_G = G(tmp_x, tmp_y)
  128. tmp1_G = G(x[j], y[j])
  129. # Collision detection
  130. if(G(x[j], y[j]) >= 0 && G(tmp_x, tmp_y) < 0){
  131. # vec = x_i+1 - x_i
  132. vec_x = tmp_x - x[j]
  133. vec_y = tmp_y - y[j]
  134. nor_v = d(vec_x, vec_y)
  135. while(G(x[j], y[j]) >= 0){
  136. x[j] = x[j] + vec_x / nor_v * ep
  137. y[j] = y[j] + vec_y / nor_v * ep
  138. }
  139. x[j] = x[j] - vec_x / nor_v * ep
  140. y[j] = y[j] - vec_y / nor_v * ep
  141. size = d(tmp_x-x[j], tmp_y-y[j])
  142. tmp_x = x[j] - (1+e)*size* vn(x[j],y[j],vec_x,vec_y) / nor_v * nx(x[j], y[j])
  143. tmp_y = y[j] - (1+e)*size* vn(x[j],y[j],vec_x,vec_y) / nor_v * ny(x[j], y[j])
  144. # Collision
  145. tmp_vx = vx[j] + I(x[j], y[j], vx[j], vy[j]) * nx(x[j], y[j])
  146. tmp_vy = vy[j] + I(x[j], y[j], vx[j], vy[j]) * ny(x[j], y[j])
  147. }
  148. x[j] = tmp_x
  149. y[j] = tmp_y
  150. vx[j] = tmp_vx
  151. vy[j] = tmp_vy
  152. set object 1+N*i+j circ at x[j], y[j] size r fc rgb c[j] fs solid front
  153. set object 1+N*(i-1)+j circ size r*0.01
  154.  
  155. # Start to disappear
  156. if(i>=dis){
  157. unset object 1+N*(i-dis)+j
  158. }
  159. }
  160. # Decimate and draw
  161. if(i%cut==0){
  162. replot
  163. }
  164. }
  165.  
  166. set out

GIF file ①

e=1.00

Case 2

f(x, y)=15-\left(\left|x\right|+\left|y\right|\right)

GIF file ②

e=1.00

Case 3

\begin{eqnarray*} g(x, y) &=& \left(x^2+y^2-1\right)^3+27x^2y^2\\ f(x, y) &=& g\left(\frac{x}{15}, \frac{y}{15}\right) \end{eqnarray*}

GIF file ③

e=1.00


Bloopers (in YouTube)

Fall from non-differentiable points

GIF file ④


GIF file ⑤

Search This Blog

Translate

QooQ