Lorenz equation
\begin{eqnarray*}
\frac{\mathrm{d}x}{\mathrm{d}t}&=&-\sigma(x-y) \\
\frac{\mathrm{d}y}{\mathrm{d}t}&=&Rx-y-xz\\
\frac{\mathrm{d}z}{\mathrm{d}t}&=&xy-bz
\end{eqnarray*}
\[(R=28,~b=\frac{8}{3},~\sigma=10)\]
PLT files
lorenz.plt
make.plt
lorenz.gif
Rössler equation
\begin{eqnarray*}
\frac{\mathrm{d}x}{\mathrm{d}t}&=&-y-z \\
\frac{\mathrm{d}y}{\mathrm{d}t}&=&z+ay\\
\frac{\mathrm{d}z}{\mathrm{d}t}&=&b+xz-cz
\end{eqnarray*}
\[(a=0.3,~b=0.3,~c=5.7)\]
Langford equation
\begin{eqnarray*}
\frac{\mathrm{d}x}{\mathrm{d}t}&=&(z-\beta)x-\omega y \\
\frac{\mathrm{d}y}{\mathrm{d}t}&=&\omega x+(z-\beta)y\\
\frac{\mathrm{d}z}{\mathrm{d}t}&=&\lambda+\alpha z-\frac{z^3}{3}-(x^2+y^2)(1+\rho z)+\varepsilon zx^3
\end{eqnarray*}
\[(\alpha=1,~\omega=3.5,~\beta=0.7,~\rho=0.25,~\lambda=0.6,~\varepsilon=0)\]
Other examples
GitHub:
https://github.com/hiroloquy/strange-attractor.git
No comments:
Post a Comment