Contents[hide]
YouTube
Formulation
Parametric equations
\begin{align*} \v{OC} & =\begin{bmatrix} r\theta\\ r\ \end{bmatrix} \\ \v{OP} &=\begin{bmatrix} r(\theta-\sin\theta)\\ r(1-\cos\theta) \end{bmatrix} \end{align*}Arc length L
\begin{equation*} \frac{\diff x}{\diff \theta} = r(1-\cos\theta)\ ,\ \ \frac{\diff y}{\diff \theta} = r\sin\theta \end{equation*}
\begin{align*}
L &= \int_0^{2\pi}\sqrt{\left(\frac{\diff x}{\diff \theta}\right)^2+\left(\frac{\diff y}{\diff \theta}\right)^2}\,\diff \theta\\
&= \int_0^{2\pi}\sqrt{\left[r(1-\cos\theta)\right]^2+\left[r\sin\theta\right]^2}\,\diff \theta\\
&= \int_0^{2\pi}\sqrt{2r^2(1-\cos\theta)}\,\diff \theta\\
&= \int_0^{2\pi}\sqrt{2r^2\cdot 2\sin^2\frac{\theta}{2}}\,\diff \theta\\
&= \int_0^{2\pi}2r\left|\sin\frac{\theta}{2}\right|\,\diff \theta\\
&= 2r\left[-2\cos\frac{\theta}{2}\right]_0^{2\pi} = 8r
\end{align*}
No comments:
Post a Comment