YouTube
Formulation
Parametric equations
\begin{align*}
\v{OC} & =\begin{bmatrix}
r\theta\\
r\
\end{bmatrix} \\
\v{OP} &=\begin{bmatrix}
r(\theta-\sin\theta)\\
r(1-\cos\theta)
\end{bmatrix}
\end{align*}
Arc length $L$
\begin{equation*}
\frac{\diff x}{\diff \theta} = r(1-\cos\theta)\ ,\ \
\frac{\diff y}{\diff \theta} = r\sin\theta
\end{equation*}
\begin{align*}
L &= \int_0^{2\pi}\sqrt{\left(\frac{\diff x}{\diff \theta}\right)^2+\left(\frac{\diff y}{\diff \theta}\right)^2}\,\diff \theta\\
&= \int_0^{2\pi}\sqrt{\left[r(1-\cos\theta)\right]^2+\left[r\sin\theta\right]^2}\,\diff \theta\\
&= \int_0^{2\pi}\sqrt{2r^2(1-\cos\theta)}\,\diff \theta\\
&= \int_0^{2\pi}\sqrt{2r^2\cdot 2\sin^2\frac{\theta}{2}}\,\diff \theta\\
&= \int_0^{2\pi}2r\left|\sin\frac{\theta}{2}\right|\,\diff \theta\\
&= 2r\left[-2\cos\frac{\theta}{2}\right]_0^{2\pi} = 8r
\end{align*}
Area $S$
\begin{align*}
S &= \int_{x=0}^{x=2\pi r} y \,\diff x\\
&= \int_0^{2\pi} r(1-\cos\theta) \cdot r(1-\cos\theta)\,\diff \theta\\
&= r^2 \int_0^{2\pi} \left(1-2\cos\theta+\frac{1+\cos 2\theta}{2}\right) \diff \theta\ \ \left(\because \cos^2\theta=\frac{1+\cos 2\theta}{2}\right)\\
&= r^2\left[\frac{3}{2}\theta-2\sin\theta+\frac{1}{4}\sin 2\theta\right]_0^{2\pi} = 3\pi r^2
\end{align*}
Simulation [gnuplot]
Source code (PLT file)
Output (PNG file → GIF file)
Another example
External links
▶︎
Cycloid - Wikipedia
No comments:
Post a Comment