Hoeken Linkage [gnuplot]

Thursday, April 9, 2020

gnuplot Linkage Mechanism YouTube

t f B! P L

YouTube

 

Formulation

Let \begin{eqnarray*} OA:OB:AC:BC:CD=1:2:\frac{5}{2}:\frac{5}{2}:\frac{5}{2} \end{eqnarray*} \begin{cases} O(0, 0)\\ A(r\cos\theta, r\sin\theta)\\ B(2r, 0)\\ \overrightarrow{AC}=(p,q)^T \end{cases} Then \begin{eqnarray*} AC^2 = CB^2 \end{eqnarray*} \begin{eqnarray} \labeq{condition} p^2+q^2 &= \left[(r\cos\theta+p)-2r\right]^2 + \left[(r\sin\theta+q)-0\right]^2 \end{eqnarray} By finding $p$ versus $q$ from eq. (\ref{eq:condition}), we obtain \begin{equation} \labeq{pvsq} p = \frac{(2\sin\theta)q+(5-4\cos\theta)r}{2(2-\cos\theta)} \end{equation} Considering the Euclidean norm of $\overrightarrow{AC}$, we have the relational expression between $p$ and $q$. \begin{equation} \labeq{norm} \|\overrightarrow{AC}\|^2=p^2+q^2=\frac{25}{4}r^2 \end{equation} Inserting eq. (\ref{eq:pvsq}) into eqs. (\ref{eq:norm}) and eliminating $p$, we get \begin{equation} \labeq{q} q = -\frac{r\sin\theta}{2} + r(2-\cos\theta)\sqrt{\frac{5+\cos\theta}{5-4\cos\theta}} \end{equation} Substitution of eq. (\ref{eq:q}) in eq. (\ref{eq:pvsq}) leads to eq. (\ref{eq:p}). \begin{equation} \labeq{p} p = \frac{r(2-\cos\theta)}{2}+r\sin\theta\sqrt{\frac{5+\cos\theta}{5-4\cos\theta}} \end{equation} On the other hand, the position of joint $C$ and $D$ are \begin{eqnarray} \labeq{posC} \overrightarrow{OC} &=& \overrightarrow{OA} + \overrightarrow{AC} &=& (r\cos\theta+p, r\sin\theta+q)^T\\ \labeq{posD} \overrightarrow{OD} &=& \overrightarrow{OA} + 2\overrightarrow{AC} &=& (r\cos\theta+2p, r\sin\theta+2q)^T \end{eqnarray} Inserting eq. (\ref{eq:q}), (\ref{eq:p}) into eqs. (\ref{eq:posC}), we get \begin{eqnarray} \labeq{posC2} \left\{ \begin{array}{l} C_x=\frac{r\left(2+\cos\theta\right)}{2}+r\sin\theta\sqrt{\frac{5+\cos\theta}{5-4\cos\theta}} \\ C_y=\frac{r\sin\theta}{2}+r(2-\cos\theta)\sqrt{\frac{5+\cos\theta}{5-4\cos\theta}} \end{array} \right. \end{eqnarray} Likewise, substitution of eq. (\ref{eq:q}), (\ref{eq:p}) in eqs. (\ref{eq:posD}) leads to eqs. (\ref{eq:posD2}). \begin{eqnarray} \labeq{posD2} \left\{ \begin{array}{l} D_x=2r+2r\sin\theta\sqrt{\frac{5+\cos\theta}{5-4\cos\theta}} \\ D_y=2r\left(2-\cos\theta\right)\sqrt{\frac{5+\cos\theta}{5-4\cos\theta}} \end{array} \right. \end{eqnarray}

Simulation [gnuplot]

Source code (PLT file)

Output (GIF file)


case1: $r=1$

case2: $r=2$


Search This Blog

Translate

QooQ