Contents[hide]
Animeation (YouTube 0:41-0:54 Left side)
segway_anime.plt
- # Setting --------------------
- reset
- set nokey
- set origin -0.25,0.0
- unset grid
- L = 1.0
- x = 2.0
- y = 4.0
- set size ratio y/(2.0*x)
- set xr[-x*L:x*L]
- set yr[-0.5:3.5]
- set xtics 2
- set ytics 1
- set xl "{/Times:Italic=24 x} {/Times:Normal=24 [m]}"
- set yl "{/Times:Italic=24 y} {/Times:Normal=24 [m]}"
- set tics font 'Times, 20'
- # Parametr --------------------
- ww = 0.1 # Width of wheel [m]
- pw = 0.1 # Width of pendulum [m]
- wg = 1000 # Density of wheel [kg/m3]
- pg = 1000 # Density of pendulum [kg/m3]
- r = 0.5 # Radius of wheel [m]
- rsen = 0.03 # Radius of sensor [m]
- l = 2.5 # Length of pendulum [m]
- m = pw*2*l*pg # Weight of pendulum [kg]
- M = pi*r**2*ww*wg # Weight of wheel [kg]
- a = 1.0 # Distance from Center of pendulum to Center of rotation [m]
- g = 9.81 # Gravitational acceleration [m/s2]
- dt = 0.002 # Time step [s]
- # Proportional gain
- kp1 = 5000.0 # pendulum [Nm/rad]
- kp2 = 100.0 # wheel [Nm/rad]
- # Differential gain
- kd1 = 100.0 # pendulum [Nms/rad]
- kd2 = 100.0 # wheel [Nms/rad]
- lim1 = 120 # Stop time
- lim2 = 6000 # Loop limit
- cut = 10 # Decimation
- # coefficient
- dx = dt/6
- apl = a+l/2
- lma = l/2-a
- # Set filename and output
- filename = sprintf("anime %04d-%04d-%04d-%04d.gif", kp1, kp2, kd1, kd2)
- set term gif animate delay 2 size 600,480
- set output filename
- # Function --------------------
- # Coefficient matrix
- A = m * (a**2 + (l**2)/12) # (1,1)
- B = m*a*r # (1,2) (2, 1)
- C = (m + 3/2*M) * r**2 # (2, 2)
- D = A * C # Coefficient
- E = B**2
- F = m * g * a # Torque
- # Torque generated by motor installed in wheel
- Tr(s, t, u, v) = kp1*s + kd1*t + kp2*u + kd2*v
- # theta' (pendulum angular velocity)
- f1(s, t, u, v) = t
- # theta'' (pendulum angular acceleration)
- f2(s, t, u, v) = \
- ( C*(F*sin(s)-Tr(s, t, u, v)) - B*cos(s)*( Tr(s, t, u, v)+B*(t**2)*sin(s) ) ) / (D-E*(cos(s))**2)
- # phi' (wheel angular velocity)
- f3(s, t, u, v) = v
- # phi'' (wheel angular acceleration)
- f4(s, t, u, v) = \
- ( A*(F*sin(s)-Tr(s, t, u, v)) - B*cos(s)*( Tr(s, t, u, v)+B*(t**2)*sin(s) ) ) / (D-E*(cos(s))**2)
- # Label displaying gains
- gain(a, b, c, d) = sprintf("\
- {/Times:Italic K_{/Times:Normal p1}} = %d\n\
- {/Times:Italic K_{/Times:Normal p2}} = %d\n\
- {/Times:Italic K_{/Times:Normal d1}} = %d\n\
- {/Times:Italic K_{/Times:Normal d2}} = %d", \
- a, b, c, d)
- # Time
- time(t) = sprintf("{/Times:Italic t} = %.2f [s]", t)
- # Plot --------------------
- # Initiate value
- x1 = pi/180*10 # theta (pendulum)
- x2 = pi/180*100 # theta'
- x3 = 0.0 # phi (wheel)
- x4 = 0.0 # phi'
- t = 0.0 # time
- # Draw initiate state (t = 0) for lim1 steps
- do for [i = 1:lim1] {
- # Gain and time
- set label 1 left at graph 1.02, 0.9 gain(kp1, kp2, kd1, kd2) font 'Times:Normal, 18'
- set label 2 center at graph 0.5, 0.93 time(t) font 'Times:Normal, 18'
- # Center of wheel G (x-coordinate)
- xg =r*x3
- # Wheel
- set object 1 circle at xg, r fc rgb 'grey50' size r fs solid
- # Sensor
- set object 2 circle at xg+r*sin(x3), r+r*cos(x3) fc rgb 'black' size rsen+0.03 fs solid
- set object 3 circle at xg+r*sin(x3), r+r*cos(x3) fc rgb 'white' size rsen fs solid
- # Pendulum
- set arrow 1 nohead lw 7 from xg-lma*sin(x1), r-lma*cos(x1) to xg+apl*sin(x1), r+apl*cos(x1) lc 6
- # Center of wheel
- set object 4 circle at xg, r fc rgb 'black' size rsen fs solid front
- set arrow 2 nohead lw 4 from -x*L, 0 to x*L, 0 lc -1
- plot 1/0
- }
- # Update for lim2 steps
- do for [i = 1:lim2] {
- t = t + dt
- # Calculate using Runge-Kutta 4th
- k11 = f1(x1, x2, x3, x4)
- k12 = f2(x1, x2, x3, x4)
- k13 = f3(x1, x2, x3, x4)
- k14 = f4(x1, x2, x3, x4)
- k21 = f1(x1+dt/2*k11, x2+dt/2*k12, x3+dt/2*k13, x4+dt/2*k14 )
- k22 = f2(x1+dt/2*k11, x2+dt/2*k12, x3+dt/2*k13, x4+dt/2*k14 )
- k23 = f3(x1+dt/2*k11, x2+dt/2*k12, x3+dt/2*k13, x4+dt/2*k14 )
- k24 = f4(x1+dt/2*k11, x2+dt/2*k12, x3+dt/2*k13, x4+dt/2*k14 )
- k31 = f1(x1+dt/2*k21, x2+dt/2*k22, x3+dt/2*k23, x4+dt/2*k24 )
- k32 = f2(x1+dt/2*k21, x2+dt/2*k22, x3+dt/2*k23, x4+dt/2*k24 )
- k33 = f3(x1+dt/2*k21, x2+dt/2*k22, x3+dt/2*k23, x4+dt/2*k24 )
- k34 = f4(x1+dt/2*k21, x2+dt/2*k22, x3+dt/2*k23, x4+dt/2*k24 )
- k41 = f1(x1+dt*k31, x2+dt*k32, x3+dt*k33, x4+dt*k34 )
- k42 = f2(x1+dt*k31, x2+dt*k32, x3+dt*k33, x4+dt*k34 )
- k43 = f3(x1+dt*k31, x2+dt*k32, x3+dt*k33, x4+dt*k34 )
- k44 = f4(x1+dt*k31, x2+dt*k32, x3+dt*k33, x4+dt*k34 )
- x1 = x1 + dx * (k11 + 2*k21 + 2*k31 + k41)
- x2 = x2 + dx * (k12 + 2*k22 + 2*k32 + k42)
- x3 = x3 + dx * (k13 + 2*k23 + 2*k33 + k43)
- x4 = x4 + dx * (k14 + 2*k24 + 2*k34 + k44)
- # Center of wheel G (x-coordinate)
- xg = r * x3
- # Wheel
- set object 1 at xg, r
- # Sensor
- set object 2 at xg+r*sin(x3), r+r*cos(x3)
- set object 3 at xg+r*sin(x3), r+r*cos(x3)
- # Pendulum
- set arrow 1 from xg-lma*sin(x1), r-lma*cos(x1) to xg+(a+l/2)*sin(x1), r+(a+l/2)*cos(x1)
- # Center of wheel
- set object 4 circle at xg, r
- # Title
- set label 4 center at graph 0.5, 0.93 time(t) font 'Times:Normal, 18'
- # Decimate and draw
- if(i%cut==0){
- frx = xg-x*L # Set x-range
- tox = xg+x*L
- set arrow 2 nohead lw 4 from frx, 0 to tox, 0 lc -1 # Draw ground
- plot [frx:tox] [-0.5:3.5] 1/0
- }
- }
- set out
sanime 5000-0100-0100-0100.gif
Graph (YouTube 0:41-0:54 Right side)
segway_graph.plt
- # Setting --------------------
- reset
- set key right top
- set size ratio 1.0
- set grid
- set xl "{/Times:Italic=24 t} {/Times:Normal=24 [rad]}"
- set yl "{/symbol:Italic=24 q f} {/Times:Normal=24 [s]}"
- set xtics 2
- set ytics 1
- set tics font 'Times, 20'
- # Patameter--------------------
- ww = 0.1 # Width of wheel [m]
- pw = 0.1 # Width of pendulum [m]
- wg = 1000 # Density of wheel [kg/m3]
- pg = 1000 # Density of pendulum [kg/m3]
- r = 0.5 # Radius of wheel [m]
- rsen = 0.03 # Radius of sensor [m]
- l = 2.5 # Length of pendulum [m]
- m = pw*2*l*pg # Weight of pendulum [kg]
- M = pi*r**2*ww*wg # Weight of wheel [kg]
- a = 1.0 # Distance from Center of pendulum to Center of rotation [m]
- g = 9.81 # Gravitational acceleration [m/s2]
- dt = 0.002 # Time step [s]
- dx = dt/6
- # Proportional gain
- kp1 = 5000.0 # pendulum [Nm/rad]
- kp2 = 100.0 # wheel [Nm/rad]
- # Differential gain
- kd1 = 100.0 # pendulum [Nms/rad]
- kd2 = 100.0 # wheel [Nms/rad]
- lim1 = 120 # Stop time
- lim2 = 6000 # Time limit
- cut = 10 # Decimation
- graphr = 0.5 # Radius of point plot
- # Set filename and output
- filename = sprintf("graph %04d-%04d-%04d-%04d.gif", kp1, kp2, kd1, kd2)
- set term gif animate delay 2 size 1280,480
- set output filename
- # Function --------------------
- # Coefficient matrix
- A = m * (a**2 + (l**2)/12) # (1,1)
- B = m*a*r # (1,2) (2, 1)
- C = (m + 3/2*M) * r**2 # (2, 2)
- D = A * C # Coefficient
- E = B**2
- F = m * g * a # Torque
- # Torque generated by motor installed in wheel
- Tr(s, t, u, v) = kp1*s + kd1*t + kp2*u + kd2*v
- # theta' (pendulum angular velocity)
- f1(s, t, u, v) = t
- # theta'' (pendulum angular acceleration)
- f2(s, t, u, v) = \
- ( C*(F*sin(s)-Tr(s, t, u, v)) - B*cos(s)*( Tr(s, t, u, v)+B*(t**2)*sin(s) ) ) / (D-E*(cos(s))**2)
- # phi' (wheel angular velocity)
- f3(s, t, u, v) = v
- # phi'' (wheel angular acceleration)
- f4(s, t, u, v) = \
- ( A*(F*sin(s)-Tr(s, t, u, v)) - B*cos(s)*( Tr(s, t, u, v)+B*(t**2)*sin(s) ) ) / (D-E*(cos(s))**2)
- # Label displaying gains
- gain(a, b, c, d) = sprintf("\
- {/Times:Italic K_{/Times:Normal p1}} = %d\n\
- {/Times:Italic K_{/Times:Normal p2}} = %d\n\
- {/Times:Italic K_{/Times:Normal d1}} = %d\n\
- {/Times:Italic K_{/Times:Normal d2}} = %d", \
- a, b, c, d)
- # Plot --------------------
- # Initiate value
- x1 = pi/180*10 # theta (pendulum)
- x2 = pi/180*100 # theta'
- x3 = 0.0 # phi (wheel)
- x4 = 0.0 # phi'
- t = 0.0 # time
- # Draw initiate state (t = 0) for lim1 steps
- do for [i = 1:lim1] {
- set xr[0:dt*lim2]
- set yr[-3:3]
- # Point plot
- set label 1 at t, x1 point lc 6 ps graphr pt 7
- set label 2 at t, x3 point lc 0 ps graphr pt 7
- # X-Axis (t:time)
- set arrow 1 nohead from 0, 0 to 12, 0 lc -1 lw 2
- # Set key
- plot 1/0 lw 0 lc rgb 'white' t " ",\
- 1/0 lw 4 lc 6 t "{/symbol:italic=24 q} ",\
- 1/0 lw 0 lc rgb 'white' t " ",\
- 1/0 lw 4 lc 0 t "{/symbol:italic=24 f} "
- }
- # Update for lim2 steps
- do for [i = 1:lim2] {
- t = t + dt
- # Calculate using Runge-Kutta 4th
- k11 = f1(x1, x2, x3, x4)
- k12 = f2(x1, x2, x3, x4)
- k13 = f3(x1, x2, x3, x4)
- k14 = f4(x1, x2, x3, x4)
- k21 = f1(x1+dt/2*k11, x2+dt/2*k12, x3+dt/2*k13, x4+dt/2*k14 )
- k22 = f2(x1+dt/2*k11, x2+dt/2*k12, x3+dt/2*k13, x4+dt/2*k14 )
- k23 = f3(x1+dt/2*k11, x2+dt/2*k12, x3+dt/2*k13, x4+dt/2*k14 )
- k24 = f4(x1+dt/2*k11, x2+dt/2*k12, x3+dt/2*k13, x4+dt/2*k14 )
- k31 = f1(x1+dt/2*k21, x2+dt/2*k22, x3+dt/2*k23, x4+dt/2*k24 )
- k32 = f2(x1+dt/2*k21, x2+dt/2*k22, x3+dt/2*k23, x4+dt/2*k24 )
- k33 = f3(x1+dt/2*k21, x2+dt/2*k22, x3+dt/2*k23, x4+dt/2*k24 )
- k34 = f4(x1+dt/2*k21, x2+dt/2*k22, x3+dt/2*k23, x4+dt/2*k24 )
- k41 = f1(x1+dt*k31, x2+dt*k32, x3+dt*k33, x4+dt*k34 )
- k42 = f2(x1+dt*k31, x2+dt*k32, x3+dt*k33, x4+dt*k34 )
- k43 = f3(x1+dt*k31, x2+dt*k32, x3+dt*k33, x4+dt*k34 )
- k44 = f4(x1+dt*k31, x2+dt*k32, x3+dt*k33, x4+dt*k34 )
- x1 = x1 + dx * (k11 + 2*k21 + 2*k31 + k41)
- x2 = x2 + dx * (k12 + 2*k22 + 2*k32 + k42)
- x3 = x3 + dx * (k13 + 2*k23 + 2*k33 + k43)
- x4 = x4 + dx * (k14 + 2*k24 + 2*k34 + k44)
- # Point plot
- set label 2*i+3 at t, x1 point lc 6 ps grar pt 7
- set label 2*i+4 at t, x3 point lc 0 ps grar pt 7
- # Decimate and draw
- if(i%cut==0){
- plot 1/0 lw 0 lc rgb 'white' t " ",\
- 1/0 lw 4 lc 6 t "{/symbol:italic=24 q} ",\
- 1/0 lw 0 lc rgb 'white' t " ",\
- 1/0 lw 4 lc 0 t "{/symbol:italic=24 f} "
- }
- }
- set out
graph 5000-0100-0100-0100.gif
Reference
WikipediaSegway
こんにちは。親愛なるサー私はあなたが元気になることを願っています。車輪付き倒立振子のMファイルが必要です。気にしないのであれば。私は親愛なるサーに非常に感謝するでしょう。
ReplyDelete