Processing math: 100%

Motion of Charged Particles in EM fields [gnuplot]

Friday, February 8, 2019

Electromagnetism gnuplot Mechanics YouTube

t f B! P L

YouTube


Simulation [gnuplot]

Modeling

Lorentz force \begin{equation} \label{eq:lorentz} m\boldsymbol{\ddot{x}} = \color{red}{q\boldsymbol{E}} + \color{blue}{q (\boldsymbol{v}\times \boldsymbol{B})} \end{equation}
Assume \boldsymbol{E}=\left(-kx, -ky, 2kz\right)\ \left(k\ge 0\right), \boldsymbol{B}=\left(0, 0, B\right), q=-e.Then from (\ref{eq:lorentz}) \begin{eqnarray} \ddot{x} &=& \frac{e}{m}\left(kx-\dot{y}B\right) \label{eq:x} \\ \ddot{y} &=& \frac{e}{m}\left(ky+\dot{x}B\right) \label{eq:y} \\ \ddot{z} &=& -\frac{2ek}{m}z \label{eq:z} \end{eqnarray}

em_motion_gif.plt

# Setting ----------------------------------------
reset
set term gif animate delay 5 size 1280,720
set output "em_motion.gif"
set margins 0, 0, 0, 0
unset key
unset grid
set xl "x" font"Times:Italic, 22"
set yl "y" font"Times:Italic, 22"
# Parameter ----------------------------------------
m = 2.0 # [kg]
e = 0.1 # [C]
k = 15 # [N/Cm]
B = 65 # [N/Am]
b = e*B/(2*m)
R1 = 10 # Large radius [m]
R2 = 30 # Small radius [m]
omg0 = sqrt(e*k/m) # Angular velocity of z
omg1 = b + sqrt(b**2-omg0**2)
omg2 = b - sqrt(b**2-omg0**2)
r = 0.8 # Radius of the ball
dt = 0.001 # step
dh = dt/6.0
dec = 50 # Decimation
mag = 0.15
limit = 30/dt # loop limit
DATA = "motion_data_gif.dat"
set print DATA
# Functions ----------------------------------------
# Lorentz force
f1(x, y, z, vx, vy, vz) = vx # dx/dt
f2(x, y, z, vx, vy, vz) = vy # dy/dt
f3(x, y, z, vx, vy, vz) = vz # dz/dt
f4(x, y, z, vx, vy, vz) = e/m*(k*x-vy*B) # dvx/dt
f5(x, y, z, vx, vy, vz) = e/m*(k*y+vx*B) # dvy/dt
f6(x, y, z, vx, vy, vz) = -2*e*k*z # dvz/dt
# Runge-Kutta 4th (Define rk_i(x, y, z, vx, vy, vz))
do for[i=1:6]{
rki = "rk"
fi = "f".sprintf("%d", i)
rki = rki.sprintf("%d(x, y, z, vx, vy, vz) = (\
k1 = %s(x, y, z, vx, vy, vz),\
k2 = %s(x + dt*k1/2., y + dt*k1/2., z + dt*k1/2., vx + dt*k1/2., vy + dt*k1/2., vz + dt*k1/2.),\
k3 = %s(x + dt*k2/2., y + dt*k2/2., z + dt*k2/2., vx + dt*k2/2., vy + dt*k2/2., vz + dt*k2/2.),\
k4 = %s(x + dt*k3, y + dt*k3, z + dt*k3, vx + dt*k3, vy + dt*k3, vz + dt*k3),\
dh * (k1 + 2*k2 + 2*k3 + k4))", i, fi, fi, fi, fi)
eval rki
}
# Time
Time(t) = sprintf("{/Times:Italic t} = %3.1f s", t)
# Plot ----------------------------------------
# Initial Value
t = 0
x = R1 + R2
y = 0
z = 20
vx = 0
vy = R1*omg1+R2*omg2
vz = 0
print x, y, z, vx, vy, vz # Write initial value into DAT file
# Draw initiate state for 70 steps
do for [i = 1:70] {
set label 1 Time(t) at screen 0.5, 0.90 font 'Times:Normal, 20'
set multiplot
# xyz-space
set view 60, 30, 1, 1.2
set origin 0.020,0.03
set size 0.60, 0.60*1280/720
set zl "z" font"Times:Italic, 22"
set xyplane at -50
# Lorentz force
set arrow 1 from x, y, z to x+mag*e*k*x, y+mag*e*k*y, z-mag*2*e*k*z front lc rgb'red' lw 2
set arrow 2 from x, y, z to x-mag*e*B*vy, y+mag*e*B*vx, z-mag*2*e*k*z front lc rgb 'blue' lw 2
# Ball
set obj 1 circ at x, y, z size r fc rgb 'black' fs solid front
set obj 2 circ at x, y, -40 size r fc rgb 'black' fs solid front
splot[-50:50][-50:50][-50:50] DATA using 1:2:3 with line linecolor rgb "black" lw 1
# xy-plane
set pm3d map
set origin 0.55,0.11
set size 0.48, 0.48*1280/720
unset zl
# Gray circles
set obj 3 circ at 0, 0 size R2-R1 fc rgb 'gray50' fs transparent noborder behind
set obj 4 circ at 0, 0 size R2 fc rgb 'gray50' fs transparent noborder behind
set obj 5 circ at 0, 0 size R2+R1 fc rgb 'gray50' fs transparent noborder behind
splot[-50:50][-50:50][-50:50] DATA using 1:2:3 with line linecolor rgb "black" lw 1
unset multiplot
do for[j=3:5]{
unset obj j # In order not to show obj 3,4,5 in xyz-space
}
}
# Update for limit steps
do for [i = 1:limit] {
t = t + dt
x = x + rk1(x, y, z, vx, vy, vz)
y = y + rk2(x, y, z, vx, vy, vz)
z = z + rk3(x, y, z, vx, vy, vz)
vx = vx + rk4(x, y, z, vx, vy, vz)
vy = vy + rk5(x, y, z, vx, vy, vz)
vz = vz + rk6(x, y, z, vx, vy, vz)
print x, y, z, vx, vy, vz # Write the values into DAT file
if(i%dec==0){
# Update time
set label 1 Time(t) at screen 0.5, 0.93 font 'Times:Normal, 20'
set multiplot
# xyz-space
set view 60, 30, 1, 1.2
set origin 0.020,0.03
set size 0.60, 0.60*1280/720
set zl "z" font"Times:Italic, 22"
set xyplane at -50
# Lorentz force
set arrow 1 from x, y, z to x+mag*e*k*x, y+mag*e*k*y, z-mag*2*e*k*z front lc rgb'red' lw 2
set arrow 2 from x, y, z to x-mag*e*B*vy, y+mag*e*B*vx, z-mag*2*e*k*z front lc rgb 'blue' lw 2
# Ball
set obj 1 circ at x, y, z size r fc rgb 'black' fs solid front
set obj 2 circ at x, y, -50 size r fc rgb 'black' fs solid front
splot[-50:50][-50:50][-50:50] \
DATA using 1:2:3 with line linecolor rgb "black" lw 1, \
DATA using 1:2:(-50) with line linecolor rgb "black" lw 1
# xy-plane
set pm3d map
set origin 0.55,0.11
set size 0.48, 0.48*1280/720
unset zl
# Gray circles
set obj 3 circ at 0, 0 size R2-R1 fc rgb 'gray50' fs transparent noborder behind
set obj 4 circ at 0, 0 size R2 fc rgb 'gray50' fs transparent noborder behind
set obj 5 circ at 0, 0 size R2+R1 fc rgb 'gray50' fs transparent noborder behind
splot[-50:50][-50:50][-50:50] \
DATA using 1:2:3 with line linecolor rgb "black" lw 1
unset multiplot
do for[j=3:5]{
unset obj j # In order not to show obj 3,4,5 in xyz-space
}
}
}
set out

em_motion.gif

Extra

Analytical solution

Solving (\ref{eq:z}), we obtein \begin{equation} z=C\cos\left(\sqrt{2}\omega_{0}t+\alpha\right), \end{equation}
where {\omega_{0}}^2=\frac{ek}{m}.
Rearranging (\ref{eq:x}) and (\ref{eq:y}), we have \begin{eqnarray} \left\{ \label{eq:xy} \begin{array}{l} \ddot{x}-{\omega_{0}}^2 x+2b\dot y=0\\ \ddot{y}-{\omega_{0}}^2 y+2b\dot x=0, \end{array} \right. \end{eqnarray}
where b=\frac{eB}{2m}
By putting x=Ae^{i\omega t} and y=Be^{i\omega t}, substitution of these in (\ref{eq:xy}) leads to (\ref{eq:xy2}). \begin{eqnarray} \left\{ \label{eq:xy2} \begin{array}{l} -\left(\omega^2+{\omega_{0}}^{2}\right)A+2ib\omega B = 0 \\ -2ib\omega A-\left(\omega^2+{\omega_{0}}^{2}\right)B = 0. \end{array} \right. \end{eqnarray}
To get the solutions except for A=B=0, solve (\ref{eq:det}): \begin{equation} \left| \begin{array}{cc} -\left(\omega^2+{\omega_{0}}^{2}\right) & 2ib\omega \\ -2ib\omega & -\left(\omega^2+{\omega_{0}}^{2}\right) \end{array} \right| = 0 \label{eq:det} \end{equation}
\therefore\omega^2+{\omega_0}^2 = \pm 2b\omega \label{eq:det2}
When b is greater than \omega_0, we obtain \begin{eqnarray} \label{eq:omega} \left\{ \begin{array}{l} \pm\omega_1 = b+\sqrt{b^2-{\omega_0}^2} \\ \pm\omega_2 = b-\sqrt{b^2-{\omega_0}^2}. \end{array} \right. \end{eqnarray}
Inserting (\ref{eq:omega}) into (\ref{eq:xy2}), we get \begin{eqnarray} \frac{B}{A} = \begin{cases} -i && (+\omega_1, +\omega_2)\\ i && (-\omega_1, -\omega_2). \end{cases} \end{eqnarray}
\begin{eqnarray} \label{eq:solution} \therefore\left\{ \begin{array}{l} x = A_1 e^{i\omega_1 t}+A_2 e^{-i\omega_1 t}+A_3 e^{i\omega_2 t}+A_4 e^{-i\omega_2 t} \\ y = -i A_1 e^{i\omega_1 t}+i A_2 e^{-i\omega_1 t}-i A_3 e^{i\omega_2 t}+i A_4 e^{-i\omega_2 t} \\ \end{array} \right. \end{eqnarray}
We put \begin{eqnarray} \label{eq:Ralpha} \begin{cases} R_1 = 2\sqrt{A_1 A_2} \\ R_2 = 2\sqrt{A_3 A_4} \\ \alpha_1 = \tan^{-1}\left[\frac{i\left(A_1-A_2\right)}{A_1+A_2}\right]\\ \alpha_2 = \tan^{-1}\left[\frac{i\left(A_3-A_4\right)}{A_3+A_4}\right]. \end{cases} \end{eqnarray}
Combining (\ref{eq:solution}) and (\ref{eq:Ralpha}), we obtain \begin{eqnarray} \left\{ \begin{array}{l} x = R_1 \cos\left(\omega_1 t+\alpha_1\right)+R_2 \cos\left(\omega_2 t+\alpha_2\right) \\ y = R_1 \sin\left(\omega_1 t+\alpha_1\right)+R_2 \sin\left(\omega_2 t+\alpha_2\right). \end{array} \right. \end{eqnarray}

EM_field.plt

# Setting ----------------------------------------
reset
set term png size 1280, 720
set margins 0, 0, 0, 0
unset key
unset grid
set xl "x" font"Times:Italic, 22"
set yl "y" font"Times:Italic, 22"
# Parameter ----------------------------------------
m = 2.0 # [kg]
e = 0.1 # [C]
k = 15 # [N/Cm]
B = 65 # [N/Am]
b = e*B/(2*m)
R1 = 10 # Large [m]
R2 = 30 # Small [m]
omg0 = sqrt(e*k/m)
omg1 = b + sqrt(b**2-omg0**2)
omg2 = b - sqrt(b**2-omg0**2)
mag = 0.15
array Name[2] = ["E_field", "B_field"]
array Color[2] = ["red", "blue"]
array File[2] = [".dat", ".png"]
# Functions ----------------------------------------
# Electric field
Ex(x, y, z) = -k*x
Ey(x, y, z) = -k*y
Ez(x, y, z) = 2*k*z
# Magnetic field
Bx(x, y, z) = 0
By(x, y, z) = 0
Bz(x, y, z) = B
# Plot ----------------------------------------
inc = 8 # increment
do for [f=1:2]{
if(f==1){ # Electric field
k = 15
B = 0
mag = 0.005
} else { # Magnetic field
k = 0
B = 65
mag = 0.08
}
set print Name[f].File[1]
do for [x=-40:40:inc] {
do for[y=-40:40:inc] {
do for[z=-40:40:inc]{
vx = mag*((f==1)?Ex(x, y, z):Bx(x, y, z))
vy = mag*((f==1)?Ey(x, y, z):By(x, y, z))
vz = mag*((f==1)?Ez(x, y, z):Bz(x, y, z))
print x, y, z, vx, vy, vz
}
}
}
set output Name[f].File[2]
set multiplot
# xyz-space
set view 60, 30, 1, 1.2
set origin 0.020,0.03
set size 0.60, 0.60*1280/720
set zl "z" font"Times:Italic, 22"
set xyplane at -50
splot[-50:50][-50:50][-50:50] \
Name[f].File[1] using 1:2:3:4:5:6 w vec lc rgb Color[f] lw 1
# xy-plane
set pm3d map
set origin 0.55,0.11
set size 0.48, 0.48*1280/720
unset zl
splot[-50:50][-50:50][-50:50] \
Name[f].File[1] using 1:2:3:4:5:6 w vec lc rgb Color[f] lw 1
unset multiplot
}
set out
view raw EM_field.plt hosted with ❤ by GitHub

E_field.png


B_field.png

Search This Blog

Translate

QooQ