Contents[hide]
YouTube
Simulation [gnuplot]
Model of a Bouncing Ball
Equations of motion \begin{eqnarray} \label{eq:eom1} \left\{ \begin{array}{l} \frac{dX}{dt}&=&V_X\\ \frac{dY}{dt}&=&V_Y\\ \frac{d{V}_{X}}{dt}&=&-g\sin\alpha\\ \frac{d{V}_{Y}}{dt}&=&-g\cos\alpha \end{array} \right. \end{eqnarray}
Inelastic collision
\begin{equation}
V_{Y}^{\rm{out}}=-\color{red}{e}V_{Y}^{\rm{in}}
\end{equation}
Rotation matrix
\begin{equation}
R(\alpha) = \left[
\begin{array}{cc}
\cos\alpha & -\sin\alpha \\
\sin\alpha & \cos\alpha
\end{array}
\right]
\end{equation}
Rotation using the matrix
\begin{eqnarray}
\left[\begin{array}{c} x \\ y\end{array}\right] &=& R(\alpha) \left[\begin{array}{c}X \\ Y \end{array}\right] &=&
\left[
\begin{array}{c}
X\cos\alpha - Y\sin\alpha \\
X\sin\alpha + Y\cos\alpha
\end{array}
\right]\\
\left[\begin{array}{c} v_x \\ v_y\end{array}\right] &=& R(\alpha) \left[\begin{array}{c}V_X \\ V_Y \end{array}\right] &=&
\left[
\begin{array}{c}
V_X\cos\alpha - V_Y\sin\alpha \\
V_X\sin\alpha + V_Y\cos\alpha
\end{array}
\right]\\
\end{eqnarray}
BallBouncing.plt
- # Setting ----------------------------------------
- reset
- set term gif animate delay 5 size 1280, 720
- set output "BallBouncing.gif"
- set nokey
- set grid
- L = 250 # -L<=x<=L
- A = -40 # A<=y<=B
- B = 160
- set xr[-L:L]
- set yr[A:B]
- set xl "{/TimesNewRoman:Italic=24 x}"
- set yl "{/TimesNewRoman:Italic=24 y}"
- set tics font 'Times New Roman,20'
- set xtics 50
- set ytics 40
- set size ratio -1
- # Parameter ----------------------------------------
- g = 9.8 # gravitational acceleration [m/s2]
- V = 30 # velocity [m/s]
- r = 4.0 # Radius of the ball
- a = 5*pi/180 # Slope angle [rad]
- b = -85*pi/180 # Projection angle [rad]
- dt = 0.001 # Step [s]
- dh = dt/6.0
- cut = 150 # Decimation
- dis = 800 # Start to disappear
- N = 5 # The number of balls
- array e[N] # The coefficient of restitution
- array X[N] # Position of balls
- array Y[N]
- array VX[N] # Velocity of balls
- array VY[N]
- array x[N] # Position of balls after a rotation
- array y[N]
- array vx[N] # Velocity of balls after a rotation
- array vy[N]
- array color[N] = ["royalblue", "red", "orange", "green", "black"]
- cnt = 0 # The number of balls being framed out
- # Rotation matrix R(a)
- # R[1]=R11, R[2]=R12, R[3]=R21, R[4]=R22
- array R[4] = [cos(a), -sin(a), sin(a), cos(a)]
- # Functions ----------------------------------------
- # Equations of Motion
- f1(x, y, vx, vy) = vx # dx/dt
- f2(x, y, vx, vy) = vy # dy/dt
- f3(x, y, vx, vy) = -g*sin(a) # dvx/dt
- f4(x, y, vx, vy) = -g*cos(a) # dvy/dt
- # 4th order Runge-Kutta (Define rk_i(x, y, vx, vy))
- do for[i=1:4]{
- rki = "rk"
- fi = "f".sprintf("%d", i)
- rki = rki.sprintf("%d(x, y, vx, vy) = (\
- k1 = %s(x, y, vx, vy),\
- k2 = %s(x + dt*k1/2., y + dt*k1/2., vx + dt*k1/2., vy + dt*k1/2.),\
- k3 = %s(x + dt*k2/2., y + dt*k2/2., vx + dt*k2/2., vy + dt*k2/2.),\
- k4 = %s(x + dt*k3, y + dt*k3, vx + dt*k3, vy + dt*k3),\
- dh * (k1 + 2*k2 + 2*k3 + k4))", i, fi, fi, fi, fi)
- eval rki
- }
- # (X,Y) ->(x,y) (x=R(a)X)
- x(X, Y) = R[1]*X + R[2]*Y
- y(X, Y) = R[3]*X + R[4]*Y
- # (x,y) -> (X,Y) (X=R(-a)x)
- X(x, y) = R[4]x - R[2]*y
- Y(x, y) = -R[3]*x + R[1]*y
- # Time
- Time(t) = sprintf("{/TimesNewRoman:Italic t} = %.1f s", t)
- # Plot ----------------------------------------
- # Initial Value
- t = 0
- b_inc = 3
- do for[i=1:N]{
- X[i] = X(150, 60)
- Y[i] = Y(150, 60)
- VX[i] = V*cos(b + (b_inc*(i-int(N/2))) * pi/180)
- VY[i] = V*sin(b + (b_inc*(i-int(N/2))) * pi/180)
- e[i] = 0.3+(1.0-0.3)/N*i # float division
- # Vector rotation (Rotation matrix R(a))
- x[j] = x(X[j] , Y[j] )
- y[j] = y(X[j] , Y[j] )
- vx[j] = x(VX[j], VY[j])
- vy[j] = y(VX[j], VY[j])
- }
- # Draw initiate state for 70 steps
- do for [i=1:70] {
- # Time
- set label 1 Time(t) left at graph 0.01, 0.93 font 'TimesNewRoman, 25'
- # Balls
- do for[j=1:N]{
- set obj j circ at x[j], y[j] size r fc rgb color[j] fs solid noborder
- }
- # Draw ground and balls
- plot tan(a)*x with filledcurve x1 lc rgb 'gray50'
- }
- # Update until all of balls are framed out
- i = 0 # The number of loops
- while(1){
- i = i +1
- t = t + dt
- set label 1 Time(t)
- do for[j=1:N]{
- # 4th order Runge-Kutta
- temp_X = X[j] + rk1(X[j], Y[j], VX[j], VY[j])
- temp_Y = Y[j] + rk2(X[j], Y[j], VX[j], VY[j])
- temp_VX = VX[j] + rk3(X[j], Y[j], VX[j], VY[j])
- temp_VY = VY[j] + rk4(X[j], Y[j], VX[j], VY[j])
- X[j]=temp_X; Y[j]=temp_Y; VX[j]=temp_VX; VY[j]=temp_VY
- # Judge whether balls bounce or not
- if(Y[j]<r){
- Y[j] = r
- VY[j] = -e[j]*VY[j] # inelastic collision
- }
- # Vector rotation (Rotation matrix R(a))
- x[j] = x(X[j] , Y[j] )
- y[j] = y(X[j] , Y[j] )
- vx[j] = x(VX[j], VY[j])
- vy[j] = y(VX[j], VY[j])
- # Update objects
- set obj N*i+j circ at x[j], y[j] size r fc rgb color[j] fs solid noborder
- # Make old objects trajectory of the ball
- set obj N*(i-1)+j at x[j], y[j] size 0.1
- # Start to disappear
- if(i>=dis){
- unset object N*(i-dis)+j
- }
- }
- # Decimate and plot
- if(i%cut==0){
- replot
- }
- # Count the number of balls being framed out
- do for[j=1:N]{
- if(x[j]<-L-r){
- cnt = cnt + 1
- }
- }
- # Exit from the loop when all balls being framed out
- if(cnt == N){
- break
- } else {
- cnt =0
- }
- }
- set out
BallBouncing.gif
V=30\mathrm{m/s},\ a=5^\circ,\ b=-85^\circ,\ e_i=0.3+0.14i,\ b_{\mathrm{inc}}=3t=0: X_j=200\cos\left(a\right)+60\sin\left(a\right),\ Y_{j}=-200\sin\left(a\right)+60\cos\left(a\right)\\ \left(t=0: x_{j}=200,\ y_{j}=60\right)
BallBounding2.gif
V=30\mathrm{m/s},\ a=15^\circ,\ b=-75^\circ,\ e=0.7, b_{\mathrm{inc}}=3t=0: X_j=200\cos\left(a\right)+120\sin\left(a\right),\ Y_{j}=-200\sin\left(a\right)+120\cos\left(a\right)\\ \left(t=0: x_{j}=200,\ y_{j}=120\right)
BallBounding3.gif
V=30\mathrm{m/s},\ a=5^\circ,\ b=15^\circ,\ e=0.8, b_{\mathrm{inc}}=9t=0: X_j=-0.8L,\ Y_{j}=0.25B
Extra
BallBounding4.gif
V=30\mathrm{m/s},\ a=5^\circ,\ b=-75^\circ,\ e=0.8, b_{\mathrm{inc}}=5t=0: X_j=60\sin\left(a\right),\ Y_{j}=60\cos\left(a\right)\\ \left(t=0: x_{j}=0,\ y_{j}=60\right)