Contents[hide]
YouTube
Simulation [gnuplot]
Model of a Bouncing Ball
Equations of motion \begin{eqnarray} \label{eq:eom2} \left\{ \begin{array}{l} \frac{dX}{dt}&=&V_X\\ \frac{dY}{dt}&=&V_Y\\ \frac{d{V}_{X}}{dt}&=&-g\sin\alpha\\ \frac{d{V}_{Y}}{dt}&=&-g\cos\alpha \end{array} \right. \end{eqnarray} Inelastic collision \begin{eqnarray} V_{X}^{\rm{out}}&=-\color{red}{e}V_{X}^{\rm{in}}\\ V_{Y}^{\rm{out}}&=-\color{red}{e}V_{Y}^{\rm{in}} \end{eqnarray} Rotation matrix \begin{equation} R(\alpha) = \left[ \begin{array}{cc} \cos\alpha & -\sin\alpha \\ \sin\alpha & \cos\alpha \end{array} \right] \end{equation} Rotation using the matrix \begin{eqnarray} \left[\begin{array}{c} x \\ y\end{array}\right] &=& R(\alpha) \left[\begin{array}{c}X \\ Y \end{array}\right] &=& \left[ \begin{array}{c} X\cos\alpha - Y\sin\alpha \\ X\sin\alpha + Y\cos\alpha \end{array} \right]\\ \left[\begin{array}{c} v_x \\ v_y\end{array}\right] &=& R(\alpha) \left[\begin{array}{c}V_X \\ V_Y \end{array}\right] &=& \left[ \begin{array}{c} V_X\cos\alpha - V_Y\sin\alpha \\ V_X\sin\alpha + V_Y\cos\alpha \end{array} \right]\\ \end{eqnarray}
Case 1: \alpha=20^\circ
PLT file ①
- # Setting ----------------------------------------
- reset
- set term gif animate delay 5 size 1280, 720
- set output "BallBox.gif"
- set nokey
- unset grid
- A = -250 # A<=x<=B
- B = 250
- C = -60 # C<=y<=D
- D = 180
- set xr[A:B]
- set yr[C:D]
- set xl "{/TimesNewRoman:Italic=24 x}"
- set yl "{/TimesNewRoman:Italic=24 y}"
- set tics front font 'Times New Roman,20'
- set xtics 50
- set ytics 50
- set size ratio -1
- # Parameter ----------------------------------------
- m = 1.5 # mass [kg]
- g = 9.8 # gravitational acceleration [m/s2]
- r = 4.0 # Radius of the ball
- V = 40 # velocity [m/s]
- a = 20*pi/180 # Slope angle [rad] (-90<a<90)
- b = 70*pi/180 # Projection angle [rad]
- e = 0.8 # The coefficient of restitution [-]
- ep = 2 # Epsilon
- dt = 0.001 # Step [s]
- dh = dt/6.0
- cut = 200 # Decimation
- dis = 800 # Start to disappear
- N = 5 # The number of balls
- cnt = 0 # The number of balls being framed out
- array X[N] # Position of balls
- array Y[N]
- array VX[N] # Velocity of balls
- array VY[N]
- array x[N] # Position of balls after a rotation
- array y[N]
- array vx[N] # Velocity of balls after a rotation
- array vy[N]
- # Color of balls
- array color[N] = ["royalblue", "red", "orange", "green", "black"]
- # Border line
- Lu = 130
- Ld = 0
- Lr = 150
- Ll = -150
- # Goal
- if(a>0){
- GOALx = Ll + r + ep
- } else { if(a<0) {
- GOALx = Lr - r - ep
- } else { if(a==0) {
- # Not define GOALx
- }}}
- GOALy = Ld + r + ep
- #Rotation matrix R(a)
- # R[1]=R11, R[2]=R12, R[3]=R21, R[4]=R22
- array R[4] = [cos(a), -sin(a), sin(a), cos(a)]
- # Functions ----------------------------------------
- # Equations of Motion
- f1(x, y, vx, vy) = vx # dx/dt
- f2(x, y, vx, vy) = vy # dy/dt
- f3(x, y, vx, vy) = -g*sin(a) # dvx/dt
- f4(x, y, vx, vy) = -g*cos(a) # dvy/dt
- # 4th order Runge-Kutta (Define rk_i(x, y, vx, vy))
- do for[i=1:4]{
- rki = "rk"
- fi = "f".sprintf("%d", i)
- rki = rki.sprintf("%d(x, y, vx, vy) = (\
- k1 = %s(x, y, vx, vy),\
- k2 = %s(x + dt*k1/2., y + dt*k1/2., vx + dt*k1/2., vy + dt*k1/2.),\
- k3 = %s(x + dt*k2/2., y + dt*k2/2., vx + dt*k2/2., vy + dt*k2/2.),\
- k4 = %s(x + dt*k3, y + dt*k3, vx + dt*k3, vy + dt*k3),\
- dh * (k1 + 2*k2 + 2*k3 + k4))", i, fi, fi, fi, fi)
- eval rki
- }
- # X->x, Y->y (x=R(a)X)
- x(a, b) = R[1]*a + R[2]*b
- y(a, b) = R[3]*a + R[4]*b
- # x->X, y->Y (X=R(-a)x)
- X(a, b) = R[4]*a - R[2]*b
- Y(a, b) = -R[3]*a + R[1]*b
- # Time
- Time(t) = sprintf("{/TimesNewRoman:Italic t} = %.1f", t)
- # Plot ----------------------------------------
- # Initial Value
- t = 0
- b_inc = 36 # Increment for b
- do for[j=1:N]{
- X[j] = X(0, 60)
- Y[j] = Y(0, 60)
- VX[j] = V*cos(b + (b_inc*(j-int(N/2))) * pi/180)
- VY[j] = V*sin(b + (b_inc*(j-int(N/2))) * pi/180)
- # Vector rotation (Rotation matrix R(a))
- x[j] = x(X[j] , Y[j] )
- y[j] = y(X[j] , Y[j] )
- vx[j] = x(VX[j], VY[j])
- vy[j] = y(VX[j], VY[j])
- }
- # Draw initiate state for 70 steps
- do for [i=1:70] {
- # Time
- set label 1 Time(t) left at graph 0.05, 0.93 font 'TimesNewRoman, 25' front
- # Balls
- do for[j=1:N]{
- set obj j circ at x[j], y[j] size r fc rgb color[j] fs solid noborder
- }
- # Draw ground and balls
- if(a != 0){
- plot tan(a)*(x-x(0, Ld)) + y(0, Ld) with filledcurve x1 lc rgb 'gray50', \
- tan(a)*(x-x(0, Lu)) + y(0, Lu) with filledcurve x2 lc rgb 'gray50', \
- -1/tan(a)*(x-x(Ll, 0)) + y(Ll, 0) with filledcurve y1 lc rgb 'gray50', \
- -1/tan(a)*(x-x(Lr, 0)) + y(Lr, 0) with filledcurve y2 lc rgb 'gray50'
- } else {
- plot Ld with filledcurve x1 lc rgb 'gray50', \
- Lu with filledcurve x2 lc rgb 'gray50', \
- ((x<Ll)||(x>Lr) ? Lu : 1/0) with filledcurve y1=Ld lc rgb 'gray50'
- }
- }
- # Update until all of balls are framed out
- i = 0 # The number of loops
- while(1){
- i = i +1
- t = t + dt
- set label 1 Time(t)
- do for[j=1:N]{
- # 4th order Runge-Kutta
- temp_X = X[j] + rk1(X[j], Y[j], VX[j], VY[j])
- temp_Y = Y[j] + rk2(X[j], Y[j], VX[j], VY[j])
- temp_VX = VX[j] + rk3(X[j], Y[j], VX[j], VY[j])
- temp_VY = VY[j] + rk4(X[j], Y[j], VX[j], VY[j])
- X[j]=temp_X; Y[j]=temp_Y; VX[j]=temp_VX; VY[j]=temp_VY
- # Judge whether balls bounce or not
- if(Y[j] > Lu-r){
- Y[j] = Lu-r
- VY[j] = -e*VY[j]
- }
- if(Y[j] < Ld+r){
- Y[j] = Ld+r
- VY[j] = -e*VY[j]
- }
- if(X[j] > Lr-r){
- X[j] = Lr-r
- VX[j] = -e*VX[j]
- }
- if(X[j] < Ll+r){
- X[j] = Ll+r
- VX[j] = -e*VX[j]
- }
- # Vector rotation (Rotation matrix R(a))
- x[j] = x(X[j] , Y[j] )
- y[j] = y(X[j] , Y[j] )
- vx[j] = x(VX[j], VY[j])
- vy[j] = y(VX[j], VY[j])
- # Update objects
- set obj N*i+j circ at x[j], y[j] size r fc rgb color[j] fs solid noborder
- # Make old objects trajectory of the ball
- set obj N*(i-1)+j at x[j], y[j] size 0.1
- # Start to disappear
- if(i>=dis){
- unset object 1+N*(i-dis)+j
- }
- }
- # Decimate and plot
- if(i%cut==0){
- replot
- }
- # Count balls meeting a condition
- do for[j=1:N]{
- if(a > 0){
- if(X[j]<GOALx && Y[j]<GOALy){
- cnt = cnt + 1 # whether a ball stands still or not
- }
- } else { if(a < 0){
- if(X[j]>GOALx && Y[j]<GOALy){
- cnt = cnt + 1 # whether a ball stands still or not
- }
- } else {
- if(Y[j]<GOALy){
- cnt = cnt + 1 # whether a ball is grounded or not
- }
- }}
- }
- # Exit from the loop when all of balls meet the condition
- if(cnt == N){
- break
- } else {
- cnt =0
- }
- }
- set out
GIF file ①
V=40\ \mathrm{m/s},\ a=20^\circ,\ b=70^\circ,\ e=0.8,\ \varepsilon=0.1,\\L_u=1320,\ L_d=0,\ L_r=150,\ L_l=-150Case 2: \alpha=45^\circ
PLT file ②
- A = -200
- B = 200
- C = -200
- D = 200
- V = 40
- a = 45*pi/180
- b = 50*pi/180
- e = 0.8
- ep = 2
- Lu = 120
- Ld = -120
- Lr = 120
- Ll = -120
GIF file ②
V=40\ \mathrm{m/s},\ a=45^\circ,\ b=50^\circ,\ e=0.8,\ \varepsilon=2,\\L_u=120,\ L_d=-120,\ L_r=120,\ L_l=-120Case 3: \alpha=0^\circ
GIF file ④
V=40\ \mathrm{m/s},\ a=0^\circ,\ b=85^\circ,\ e=0.8,\ \varepsilon=2,\\L_u=130,\ L_d=0,\ L_r=150,\ L_l=-150Extra
Case 4: \alpha=5^\circ
GIF file ③
V=60\ \mathrm{m/s},\ a=5^\circ,\ b=85^\circ,\ e=0.5,\ \varepsilon=2,\\L_u=130,\ L_d=0,\ L_r=150,\ L_l=-150