Processing math: 100%

Simulation of Bouncing Balls | #2: Bouncing in Boxes [gnuplot]

Saturday, February 16, 2019

gnuplot Mechanics Simulation of Bouncing Balls YouTube

t f B! P L

YouTube

Simulation [gnuplot]

Model of a Bouncing Ball


Equations of motion \begin{eqnarray} \label{eq:eom2} \left\{ \begin{array}{l} \frac{dX}{dt}&=&V_X\\ \frac{dY}{dt}&=&V_Y\\ \frac{d{V}_{X}}{dt}&=&-g\sin\alpha\\ \frac{d{V}_{Y}}{dt}&=&-g\cos\alpha \end{array} \right. \end{eqnarray} Inelastic collision \begin{eqnarray} V_{X}^{\rm{out}}&=-\color{red}{e}V_{X}^{\rm{in}}\\ V_{Y}^{\rm{out}}&=-\color{red}{e}V_{Y}^{\rm{in}} \end{eqnarray} Rotation matrix \begin{equation} R(\alpha) = \left[ \begin{array}{cc} \cos\alpha & -\sin\alpha \\ \sin\alpha & \cos\alpha \end{array} \right] \end{equation} Rotation using the matrix \begin{eqnarray} \left[\begin{array}{c} x \\ y\end{array}\right] &=& R(\alpha) \left[\begin{array}{c}X \\ Y \end{array}\right] &=& \left[ \begin{array}{c} X\cos\alpha - Y\sin\alpha \\ X\sin\alpha + Y\cos\alpha \end{array} \right]\\ \left[\begin{array}{c} v_x \\ v_y\end{array}\right] &=& R(\alpha) \left[\begin{array}{c}V_X \\ V_Y \end{array}\right] &=& \left[ \begin{array}{c} V_X\cos\alpha - V_Y\sin\alpha \\ V_X\sin\alpha + V_Y\cos\alpha \end{array} \right]\\ \end{eqnarray}

Case 1: \alpha=20^\circ

PLT file ①

  1. # Setting ----------------------------------------
  2. reset
  3. set term gif animate delay 5 size 1280, 720
  4. set output "BallBox.gif"
  5. set nokey
  6. unset grid
  7.  
  8. A = -250 # A<=x<=B
  9. B = 250
  10. C = -60 # C<=y<=D
  11. D = 180
  12. set xr[A:B]
  13. set yr[C:D]
  14. set xl "{/TimesNewRoman:Italic=24 x}"
  15. set yl "{/TimesNewRoman:Italic=24 y}"
  16. set tics front font 'Times New Roman,20'
  17. set xtics 50
  18. set ytics 50
  19. set size ratio -1
  20.  
  21. # Parameter ----------------------------------------
  22. m = 1.5 # mass [kg]
  23. g = 9.8 # gravitational acceleration [m/s2]
  24. r = 4.0 # Radius of the ball
  25. V = 40 # velocity [m/s]
  26. a = 20*pi/180 # Slope angle [rad] (-90<a<90)
  27. b = 70*pi/180 # Projection angle [rad]
  28. e = 0.8 # The coefficient of restitution [-]
  29. ep = 2 # Epsilon
  30.  
  31. dt = 0.001 # Step [s]
  32. dh = dt/6.0
  33. cut = 200 # Decimation
  34. dis = 800 # Start to disappear
  35.  
  36. N = 5 # The number of balls
  37. cnt = 0 # The number of balls being framed out
  38. array X[N] # Position of balls
  39. array Y[N]
  40. array VX[N] # Velocity of balls
  41. array VY[N]
  42. array x[N] # Position of balls after a rotation
  43. array y[N]
  44. array vx[N] # Velocity of balls after a rotation
  45. array vy[N]
  46.  
  47. # Color of balls
  48. array color[N] = ["royalblue", "red", "orange", "green", "black"]
  49. # Border line
  50. Lu = 130
  51. Ld = 0
  52. Lr = 150
  53. Ll = -150
  54.  
  55. # Goal
  56. if(a>0){
  57. GOALx = Ll + r + ep
  58. } else { if(a<0) {
  59. GOALx = Lr - r - ep
  60. } else { if(a==0) {
  61. # Not define GOALx
  62. }}}
  63.  
  64. GOALy = Ld + r + ep
  65.  
  66. #Rotation matrix R(a)
  67. # R[1]=R11, R[2]=R12, R[3]=R21, R[4]=R22
  68. array R[4] = [cos(a), -sin(a), sin(a), cos(a)]
  69.  
  70.  
  71. # Functions ----------------------------------------
  72. # Equations of Motion
  73. f1(x, y, vx, vy) = vx # dx/dt
  74. f2(x, y, vx, vy) = vy # dy/dt
  75. f3(x, y, vx, vy) = -g*sin(a) # dvx/dt
  76. f4(x, y, vx, vy) = -g*cos(a) # dvy/dt
  77.  
  78. # 4th order Runge-Kutta (Define rk_i(x, y, vx, vy))
  79. do for[i=1:4]{
  80. rki = "rk"
  81. fi = "f".sprintf("%d", i)
  82. rki = rki.sprintf("%d(x, y, vx, vy) = (\
  83. k1 = %s(x, y, vx, vy),\
  84. k2 = %s(x + dt*k1/2., y + dt*k1/2., vx + dt*k1/2., vy + dt*k1/2.),\
  85. k3 = %s(x + dt*k2/2., y + dt*k2/2., vx + dt*k2/2., vy + dt*k2/2.),\
  86. k4 = %s(x + dt*k3, y + dt*k3, vx + dt*k3, vy + dt*k3),\
  87. dh * (k1 + 2*k2 + 2*k3 + k4))", i, fi, fi, fi, fi)
  88. eval rki
  89. }
  90.  
  91. # X->x, Y->y (x=R(a)X)
  92. x(a, b) = R[1]*a + R[2]*b
  93. y(a, b) = R[3]*a + R[4]*b
  94.  
  95. # x->X, y->Y (X=R(-a)x)
  96. X(a, b) = R[4]*a - R[2]*b
  97. Y(a, b) = -R[3]*a + R[1]*b
  98.  
  99. # Time
  100. Time(t) = sprintf("{/TimesNewRoman:Italic t} = %.1f", t)
  101.  
  102.  
  103. # Plot ----------------------------------------
  104. # Initial Value
  105. t = 0
  106. b_inc = 36 # Increment for b
  107. do for[j=1:N]{
  108. X[j] = X(0, 60)
  109. Y[j] = Y(0, 60)
  110. VX[j] = V*cos(b + (b_inc*(j-int(N/2))) * pi/180)
  111. VY[j] = V*sin(b + (b_inc*(j-int(N/2))) * pi/180)
  112. # Vector rotation (Rotation matrix R(a))
  113. x[j] = x(X[j] , Y[j] )
  114. y[j] = y(X[j] , Y[j] )
  115. vx[j] = x(VX[j], VY[j])
  116. vy[j] = y(VX[j], VY[j])
  117. }
  118.  
  119. # Draw initiate state for 70 steps
  120. do for [i=1:70] {
  121. # Time
  122. set label 1 Time(t) left at graph 0.05, 0.93 font 'TimesNewRoman, 25' front
  123. # Balls
  124. do for[j=1:N]{
  125. set obj j circ at x[j], y[j] size r fc rgb color[j] fs solid noborder
  126. }
  127. # Draw ground and balls
  128. if(a != 0){
  129. plot tan(a)*(x-x(0, Ld)) + y(0, Ld) with filledcurve x1 lc rgb 'gray50', \
  130. tan(a)*(x-x(0, Lu)) + y(0, Lu) with filledcurve x2 lc rgb 'gray50', \
  131. -1/tan(a)*(x-x(Ll, 0)) + y(Ll, 0) with filledcurve y1 lc rgb 'gray50', \
  132. -1/tan(a)*(x-x(Lr, 0)) + y(Lr, 0) with filledcurve y2 lc rgb 'gray50'
  133. } else {
  134. plot Ld with filledcurve x1 lc rgb 'gray50', \
  135. Lu with filledcurve x2 lc rgb 'gray50', \
  136. ((x<Ll)||(x>Lr) ? Lu : 1/0) with filledcurve y1=Ld lc rgb 'gray50'
  137. }
  138. }
  139.  
  140. # Update until all of balls are framed out
  141. i = 0 # The number of loops
  142. while(1){
  143. i = i +1
  144. t = t + dt
  145. set label 1 Time(t)
  146.  
  147. do for[j=1:N]{
  148. # 4th order Runge-Kutta
  149. temp_X = X[j] + rk1(X[j], Y[j], VX[j], VY[j])
  150. temp_Y = Y[j] + rk2(X[j], Y[j], VX[j], VY[j])
  151. temp_VX = VX[j] + rk3(X[j], Y[j], VX[j], VY[j])
  152. temp_VY = VY[j] + rk4(X[j], Y[j], VX[j], VY[j])
  153. X[j]=temp_X; Y[j]=temp_Y; VX[j]=temp_VX; VY[j]=temp_VY
  154. # Judge whether balls bounce or not
  155. if(Y[j] > Lu-r){
  156. Y[j] = Lu-r
  157. VY[j] = -e*VY[j]
  158. }
  159. if(Y[j] < Ld+r){
  160. Y[j] = Ld+r
  161. VY[j] = -e*VY[j]
  162. }
  163. if(X[j] > Lr-r){
  164. X[j] = Lr-r
  165. VX[j] = -e*VX[j]
  166. }
  167. if(X[j] < Ll+r){
  168. X[j] = Ll+r
  169. VX[j] = -e*VX[j]
  170. }
  171. # Vector rotation (Rotation matrix R(a))
  172. x[j] = x(X[j] , Y[j] )
  173. y[j] = y(X[j] , Y[j] )
  174. vx[j] = x(VX[j], VY[j])
  175. vy[j] = y(VX[j], VY[j])
  176.  
  177. # Update objects
  178. set obj N*i+j circ at x[j], y[j] size r fc rgb color[j] fs solid noborder
  179. # Make old objects trajectory of the ball
  180. set obj N*(i-1)+j at x[j], y[j] size 0.1
  181. # Start to disappear
  182. if(i>=dis){
  183. unset object 1+N*(i-dis)+j
  184. }
  185. }
  186. # Decimate and plot
  187. if(i%cut==0){
  188. replot
  189. }
  190. # Count balls meeting a condition
  191. do for[j=1:N]{
  192. if(a > 0){
  193. if(X[j]<GOALx && Y[j]<GOALy){
  194. cnt = cnt + 1 # whether a ball stands still or not
  195. }
  196. } else { if(a < 0){
  197. if(X[j]>GOALx && Y[j]<GOALy){
  198. cnt = cnt + 1 # whether a ball stands still or not
  199. }
  200. } else {
  201. if(Y[j]<GOALy){
  202. cnt = cnt + 1 # whether a ball is grounded or not
  203. }
  204. }}
  205. }
  206. # Exit from the loop when all of balls meet the condition
  207. if(cnt == N){
  208. break
  209. } else {
  210. cnt =0
  211. }
  212. }
  213.  
  214. set out

GIF file ①

V=40\ \mathrm{m/s},\ a=20^\circ,\ b=70^\circ,\ e=0.8,\ \varepsilon=0.1,\\L_u=1320,\ L_d=0,\ L_r=150,\ L_l=-150

Case 2: \alpha=45^\circ

PLT file ②

  1. A = -200
  2. B = 200
  3. C = -200
  4. D = 200
  1. V = 40
  2. a = 45*pi/180
  3. b = 50*pi/180
  4. e = 0.8
  5. ep = 2
  1. Lu = 120
  2. Ld = -120
  3. Lr = 120
  4. Ll = -120

GIF file ②

V=40\ \mathrm{m/s},\ a=45^\circ,\ b=50^\circ,\ e=0.8,\ \varepsilon=2,\\L_u=120,\ L_d=-120,\ L_r=120,\ L_l=-120



Case 3: \alpha=0^\circ

GIF file ④

V=40\ \mathrm{m/s},\ a=0^\circ,\ b=85^\circ,\ e=0.8,\ \varepsilon=2,\\L_u=130,\ L_d=0,\ L_r=150,\ L_l=-150

Extra

Case 4: \alpha=5^\circ

GIF file ③

V=60\ \mathrm{m/s},\ a=5^\circ,\ b=85^\circ,\ e=0.5,\ \varepsilon=2,\\L_u=130,\ L_d=0,\ L_r=150,\ L_l=-150

Search This Blog

Translate

QooQ